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Potential Trajectories of Hypoxia Response to Remediation
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» Before investing in efforts
to remediate hypoxia by
reducing inputs of nutrient
and organic wastes, we need
clear sense of expected
responses over time.

« Many potential alternatives
--Linear dose-response
--Threshold response
--Hysteresis parallel tracks
--Baseline shift

« Unfortunately, few clear
documented case studies
have been published

 More exist, but data are
hard to obtain



Chesapeake Bay
Hypoxia Case:

Key Physical Features

e Large ratio of watershed
to estuarine area (~ 14:1)

e Deep channel is
seasonally stratified

 Broad shallows flank
channel (mean Z = 6.5m)

* Relatively long water
residence time (~ 6 mo)
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Stratification Control of Hypoxia

Susg. R. MD/VA Atlantic
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* Pynocline strength (red) controls position & intensity of hypoxia (gray)
» Vertical mixing & landward transport replenish deep O, pools in summer.

(Hagy 2002 Univ. of MD Thesis)



Trend in Bay Summer Hypoxia Volume (1950-2004)
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» Exponential increase, w/ strongest change since 1980
e Interannual variability driven by high and low river flow



Volume of Summer Hypoxia Related to River Flow
and N Loading: Regime Shift in Early 1980s

* Volumes of summer hypoxia
(<1 mg/L) and anoxia (< 0.5
mg/L) related to winter-spring
river flow.

* Abrupt increase in slope of
hypoxia-nitrate relation for
1950-1980 and 1980-2003
(hypoxia per NO; Load)

 What factors drive this abrupt
regime shift?

(Hagy et al. 2004. Estuar. & Coasts,

Kemp et al. 2005. MEPS)
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Is Chesapeake

Hypoxia Regime Shift Unique?
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sExamples (there are
others) of abrupt shifts in
hypoxia per N-Load

*Change-point analysis
used to detect shifts.

*Explanations differ but
unexpected increase
deters efforts to
remediate hypoxia

(Kemp et al. 2009. BG)



Significant Shift in Bottom Water NH,
Pools Since Early 1980s
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Bottom-Water NH, vs. TN Loading
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*Bottom-water NH, pools
generally increase with TN
loading.

In early 1980s the size of
the bottom NH, pools
Increased (>2x) abruptly

*Biogeochemical change
(hypoxia = benthic fauna
loss = denitrification loss -
more NH, recycling - more
algae - more hypoxia)



Hypoxia Enhancement of Benthic
Nutrient (NH,*) Recycling Efficiency
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(J. Cornwell data in Kemp et al. '05 MEPS)

* NH, ‘Recycling Efficiency’ (NRE) is
flux ratio (NH, /(NH, + N,)

* NRE increases w/ decreasing O, as
nitrification-denitrification is inhibited
(NH, shunted & lost to N,)

* Increased NRE with hypoxia further
driven by loss of benthic animals

e Thus, NH, recycling is higher under
hypoxic conditions.

« Higher NH, recycling - More algae
- More hypoxia = More recycling

e Is increased NRE aresult or a cause
of hypoxia intensification? Or both?



Potential Explanations for ‘Regime Shift’ in
Hypoxia vs. N-Loading
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*We considered other explanations

sIncreased water temperature
tends to decrease respiration and
O, solubility

*Decadal-scale climate shifts might
affect river flow or wind

 Decline of reef-forming shellfish
filter feeders would decrease
control on plankton algal growth

» Other changes (not shown)
Include loss of nutrient trapping
with degradation of tidal marshes
and submersed plant beds



Coherence Between NAO & Hypoxia
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* NAO indexed to weaker Bermuda High
& loss of S winds that cause vertical
mixing; also indexed to Gulf Stream
2 position, higher salinity & stratification.

Hypoxic Volume (krﬁ, 2-year Moving Average)
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%5 4 05 0 05 1 15 2 « Less mixing during positive phase of

Jan-May NAQO Index (2-year Moving Average) .
NAO promotes more hypoxia per N.



Winter NAO Index: Longer Time-Series

NAO Index
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» Longer term trends in Winter NAO index shows variations and periodic (~10-30 yr)
shifts between positive and negative phases.

 Last major shift coincides with Bay “regime shift” in hypoxia per N-loading

* Index in recent years suggests a shift back down to negative phase (& possible
increase in vertical mixing and weakening of stratification).



Hypoxia Response to Changes in N-Load
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* To minimize effects of
interannual variations in
flow on relation, use mean
data from years with
Intermediate flow.

* Between 1980 - 1985,
relation of hypoxia to N-
Loading shifted up to
higher regime.

» This caused more
hypoxia per unit N-
loading, frustrating efforts
to remediate.

* Recent years show
down-shift back to pre-
1980 conditions, giving
hope for hypoxia controls.



Concluding Comments

» Cost-effective strategies for hypoxia remediation require understanding of
expected responses to interventions (e.g., reductions in nutrient load).

e Many physical and biogeochemical processes control hypoxia, and these
must be clearly understood before choosing remediation strategy.

» Chesapeake hypoxia has grown with increasing nutrient loading, and
an abrupt Increase in hypoxia/N-load occurred in early 1980s.

e It appears that hypoxia-enhanced N-recycling has contributed to this
“Regime Shift” and/or Bay recalcitrance to restoration.

« However, abrupt changes in climatic conditions (indexed to winter NAO)
coincide with this hypoxia “regime shift,” driving physical controls on hypoxia.

» There may be reason for “cautious optimism” for Bay hypoxia recovery;
possibly, a “shift-down” to lower regime with less hypoxia per N-load



